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An investigation of the symmetry and

singularity properties of classes of

third-order fluid problems
S. Jamal* and J.T. Kubayi

Abstract. Several classes of nonlinear differential equations are
studied that feature third-order derivatives and have special connec-
tions to models in boundary layer theory. We consider the integra-
bility of the equations, which is intimately linked to the singularity
structure of its solutions.

In lieu of this, we apply singularity analysis to these models to
demonstrate the utility of the method, not only in testing for integra-
bility, but also to achieve a selection method for the free parameters
of the models. In particular, we demonstrate how the effects of inte-
grability requirements imposes constraints on the equation.
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1. Introduction

The reduction of partial differential equations to ordinary differential

equations is well documented. In particular, many fluid models reduce to

third-order equations or instead may be related via some transformation.

Some special cases worth mentioning are Prandtl’s boundary layer equa-

tions that reduce to a third-order equation, namely, the stream function for

an incompressible, steady two-dimensional flow with uniform or vanishing

mainstream velocity [11]

uyuxy − uxuyy = vuyyy,

*The first author acknowledges the financial support of the National Research Foun-
dation of South Africa (118047).
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and likewise for radial flow, [14]

1

r
uzurz −

1

r2
(uz)

2 − 1

r
uruzz = νuzzz, ν constant.

Another example is that of Blasius flow of a steady fluid [6],

uyyy + uxuyy − uyuxy = 0,

and

uxxx − 54u2ux − 9u2x −
9

2
uuxx = ut,

whose reduction is linked to the Chazy IX equation [8].

Many more examples can be given, but instead we present some broad

and general forms of such third-order ordinary differential equations that

have links to partial differential equations in fluids or boundary flow prob-

lems.

Consider the class of equations, where y = y(x) and prime denotes

differentiation with respect to the independent variable x:

hy′′′ + byy′′ + cy′2 + ky′ = 0, h, b, c, k are constants, h 6= 0, (1)

the general class

y′′′ + byy′′ + cy′2 + dy2y′ + fyy′ = 0, b, c, d, f are constants, (2)

the related class of equations

y′′′ + byy′′ + cy′2 − n(ly′ − qy2)2 = 0, b, c, n, l, q are constants, (3)

and lastly, a third-order class with nonconstant coefficients

y′′′ + b(x)y′′ + c(x)y′ + d
y′2

y
+ kyn = 0, d, k, n are constants. (4)

Aside from fluids, there exist many other cases where the partial dif-

ferential equation has important connections to an ordinary differential
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equation, see [12, 23, 24] for example. Similar and related papers on such

analysis can be found in [21, 13, 7, 18].

Many of the equations discussed in this work are based on a subsystem

of Navier-Stokes system of equations, whereby in boundary layer theory, for

instance, similarity variables are derived that lead to a third-order ordinary

differential equation. Equations of this nature are commonly analyzed from

a numerical perspective.

The precise interpretation of the solution of differential equations may

be given in several ways.

One way, is the idea of symmetry induced invariant solutions of a

differential equation, and a second approach is singularity analysis. The

latter can be traced back to Painlevé [26] after its success in application by

Sophie Kowalevskaya [17]. Ablowitz et al. [2, 3, 4] developed an algorithm,

called the ARS (Ablowitz-Ramani-Segur) algorithm that tests whether the

solution of an ordinary differential equation can be expressed in terms of a

Laurent expansion. If so, the equation is said to pass the Painlevé test and

is conjectured to be integrable. A detailed description of the algorithm can

be found in the work by Conte [10].

The plan of the paper is as follows. In Section 2, all theoretical con-

siderations are discussed. In the sequel, we look at the third-order ordinary

boundary flow problems with respect to the singularity algorithm and their

symmetries. In Section 4, we summarize the work presented in the paper.

2. Symmetry and singularity theory

The procedure for determining point symmetries for an arbitrary sys-

tem of equations is as follows [25].

Consider q unknown functions uα which depend on p independent
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variables xi, i.e. u = (u1, . . . , uq), x = (x1, . . . , xp), with indices α =

1, . . . , q and i = 1, . . . , p.

Let

Gα

(
x, u(k)

)
= 0, (5)

be a system of nonlinear differential equations, where u(k) represents the

kth derivative of u with respect to x.

Definition 2.1. A one-parameter Lie group of transformations (ε as the

group parameter) that is invariant under (5) is given by

x̄ = Ξ(x, u; ε) ū = Φ(x, u; ε). (6)

Invariance of (5) under the transformation (6) implies that any solu-

tion u = Θ(x) of (5) maps into another solution v = Ψ(x; ε) of (5). Ex-

panding (6) around the identity ε = 0, generates the following infinitesimal

transformations:

x̄i = xi + εξi(x, u) +O(ε2),

ūα = uα + εηα(x, u) +O(ε2). (7)

The action of the Lie group can be recovered from that of its in-

finitesimal generators acting on the space of independent and dependent

variables.

Hence, we consider the vector field X = ξi∂xi + ηα∂uα .

Definition 2.2. The infinitesimal criterion for invariance is given by

X
[
Gα

(
x, u(k)

)]
= 0, when Gα

(
x, u(k)

)
= 0, (8)

where X is extended to all derivatives appearing in the equation through

an appropriate prolongation.
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Regarding singularity analysis, consider the equation

y(n) = E

(
x; y′; y′′, ..., yn−1

)
. (9)

If a movable singularity exists, then the solution of (9) will be de-

scribed by the power- law function y(x) ' (x− x0)p, where p is a negative

number and x0 indicates the singularity’s position. It is the initial condi-

tions, that provide us with different positions for the singular point.

The algorithm can be described by the following three steps. The first

step is to determine the leading-order behaviour of the dependent variables

of the equation.

Hence, we substitute y(x) = a0(x − x0)p, where a0 is a constant and

is the coefficient of the leading-order term, into (9) and look for two or

more dominant terms. One way to determine the dominant terms is to

look for balance after the above substitution by considering the powers in

the equation. This provides the value of p followed by a0.

After obtaining a0, we look at the “next-to-leading-order” terms, which

involves the rest of the leading-order coefficients, the aκ. In the ARS algo-

rithm we require that the Laurent series be an increasing series called the

right Painlevé series

y(x) =

∞∑
κ=0

aκ(x− x0)κ+p, (10)

where the singularity at x0 is a pole of order p.

A decreasing series called the left Painlevé series is of the form

y(x) =

∞∑
κ=0

aκ(x− x0)−κ+p. (11)

Next, one must locate the powers at which the arbitrary constants

needed to make the solution a general solution, can be introduced. An
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expression is considered,

ny(x) = a0(x− x0)p +m(x− x0)p+s, (12)

where m is a constant, and where the coefficient of terms linear in m is

required to be zero. This leads to a determining equation for the exponent

s, called the resonance. The solution of s = −1 always occurs as it is

associated with the movable singularity. If the rest of the values of the

resonance s are not integral, then the ARS algorithm terminates.

Lastly, we substitute a truncated Laurent series into the original equa-

tion, to check for inconsistencies. We take note of some limitations of the

algorithm [16]:

� the exponents of the leading-order term needs to be a negative integer

or a nonintegral rational number,

� the resonances have to be rational and real numbers,

� excluding the resonance s = −1, for a right Painlevé series the res-

onances must be nonnegative, while for a left Painlevé series, the

resonances must be nonpositive.

� for a full Laurent expansion the resonances are mixed [5].

2.1. An illustrative example

To view singularity analysis, consider the Painlevé-Ince equation,

y′′ + 3yy′ + y3 = 0, (13)

see [19, 27].

It is well-known that this equation is maximally symmetric and admits

8 Lie point symmetries [20]. We determine the leading-order of the above
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equation by firstly substituting y(x) = a0(x − x0)p into (13). From this,

we find the values of p that balances the equation, we take the powers of

(x− x0) and equate them to solve for p, i.e p = −1.

Consequently, from the same substitution above, we obtain a0, viz.

a0 = 1 or a0 = 2. This implies that the movable singularity is a simple

pole and there are two possibilities for the leading-order behaviour. The

arbitrary location of the movable singularity gives one of the constants of

integrations.

Since (13) is a second-order equation, the second constant of integration

has to be determined from a series developed about the singularity.

Now for a0 = 1, we take the truncated Laurent series given by (12)

and substitute into (13), to find an expression involving powers of m.

From this expression, we take the coefficients of m and set it to be

equal to zero, to get the determining equation of the resonances, viz. s2 −

1 = 0 which solves as s = 1 or s = −1. The value s = 1, gives the term in

the series at which the second constant of integration occurs.

For s = 1 we use the right Painlevé series (10) which is substituted into

(13) and we test for consistency by solving for some aκ’s in the sum.

Hence, taking

y(x) = (x− x0)−1 + a1 + a2(x− x0)1 + a3(x− x0)2,

and substituting it into (13), and then separating according to powers of

(x− x0), we have

3a21 + 3a2 = 0 =⇒ a2 = −a21,

and

a31 + 9a1a2 + 8a3 = 0 =⇒ a3 = a31.,

etc.
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Thus, a1 is an arbitrary constant and (13) passes the Painlevé test

with general solution

y(x) =
1

x− x0
+ a1 − a21(x− x0) + a31(x− x0)2 + . . . .

For a0 = 2, one can do a similar analysis to the above.

3. Third-order boundary flow equations

A selective list of third-order ordinary differential equations that are

included in the general equations defined above are discussed. This list is

by no means exhaustive and the reader may find many other equations that

belong to the given classes. The point is to provide a general framework of

analysis for the symmetry and singularity analysis of such equations. Some

important equations of (1) are

2y′′′ + yy′′ = 0, (14)

y′′′ + yy′′ − y′2 = 0, (15)

y′′′ + yy′′ − y′2 −M2y′ = 0, M is a magnetic parameter, (16)

y′′′ + yy′′ − βy′2 = 0, β is a constant, (17)

where, for example, (14) is the Blasius equation, (15)-(16) are Blasius type

equations and (17) is the Falkner-Skan equation. Some of the canonical

Chazy I − III equations

I : y′′′ + 6y′2 = 0,

II : y′′′ + 2yy′′ + 2y′2 = 0,

III : y′′′ − 2yy′′ + 3y′2 = 0, (18)

also belong to this class.

For some special investigations regarding the Chazy equations, see [1,

28] and references therein.
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For k = 0 in (1), the reductions associated with Prandtl’s boundary

layer equations are recovered [22]. Eqs. (2) or (3) may be used to describe,

inter alia, the canonical Chazy IV −XII equations

IV : y′′′ + 3yy′′ + 3y′2 + 3y2y′ = 0,

V : y′′′ + 2yy′′ + 4y′2 + 2y2y′ = 0,

V I : y′′′ + yy′′ + 5y′2 + y2y′ = 0,

V II : y′′′ + yy′′ + 2y′2 − 2y2y′ = 0,

V III : y′′′ + 6y2y′ = 0,

IX : y′′′ − 12y′2 − 72y2y′ − 54y4 = 0,

XI : y′′′ + 2y2y′′ + 2y′2 − 24

N2 − 1
(y′ + y2)2 = 0, Nconstant

XII : y′′′ − 2y2y′′ + 3y′2 +
4

N2 − 36
(6y′ − y2)2 = 0, (19)

or many related such third-order equations.

An example for the class (4), is the higher-order Lane-Emden equation

[29]

y′′′ +
8

x
y′′ +

12

x2
y′ + yn = 0. (20)

The standard Lane-Emden equation (which is of second-order) y′′ +

k
y y
′ + yn = 0, has been shown to pass the singularity test [15].

3.1. Point symmetry classifications

As one will observe through the classification below and the next sub-

section, symmetry analysis will complement the results obtained through

singularity testing, in terms of selecting free parameters of the equations.

We recall the fact that equations with a high degree of symmetry are
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more useful. The symmetry classification of (1) is:

∂x, for c = 0, or c = −3

2
b, or h = 0, or b, c, h, k 6= 0, c 6= −3

2
b.

∂x, ∂y, for b = 0, or b, h = 0.

∂x, F (y)∂y, for b, c, h = 0.

∂x, x∂x − y∂y, for k = 0, or k, c = 0, or h, k = 0.

F (x)∂x, G(y, x)∂y, for b, c, h, k = 0.

∂x, ∂y, x∂x − y∂y, for b, k = 0, or b, h, k = 0.

∂x, x
2c∂x − (2cxy + 18h)∂y, x∂x − y∂y, for c = −3

2
b, k = 0,

∂x, x
2∂x − 2xy∂y, x∂x − y∂y, for c = −3

2
b, k, h = 0,

∂x, ∂y, y∂y, cos

(√
kx√
h

)
∂y, sin

(√
kx√
h

)
∂y, y

√
k cos

(√
kx√
h

)
∂y

+
√
h sin

(√
kx√
h

)
∂x, y

√
k sin

(√
kx√
h

)
∂y −

√
h cos

(√
kx√
h

)
∂x,

for b, c = 0. (21)

Concerning some of the main Lie bracket relations, we have

[∂x, x∂x − y∂y] = ∂x,

[∂x, ∂y] = 0, and

[∂y, x∂x − y∂y] = −∂y.

In the specific cases Eqs. (14), (15) and (16) (M = 0), the Lie point

symmetries are ∂x, x∂x − y∂y, while for M 6= 0 in (16) we only have ∂x.

Eq. (17) admits the same two symmetries for β 6= 3
2 but an extra

third symmetry

(xy − 6)∂y −
1

2
x2∂x for β =

3

2
.
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The Lie point symmetry classification of (2) is as follows:

∂x, for c = 0 or d =
1

4
b2 +

1

6
bc or d =

7

36
b2 +

1

3
bc

or b = c = 0 or c = f = 0,

or c 6= 0, d 6= 1

4
b2 +

1

6
bc, d 6= 7

36
b2 +

1

3
bc, f 6= 0.

∂x, − x∂x + y∂y for f = 0 or d =
7

36
b2 +

1

3
bc

or c = f = 0 or b = c = f = 0.

∂x, x∂x − 2y∂y for b = c = d = 0.

∂x, ∂y, x∂x, x∂y, x
2∂y, y∂y, x

2∂x + 2xy∂y for b = c = d = f = 0.

For class (3) , the Lie point symmetries may be classified as:

∂x, − x∂x + y∂y, for b = −22

27
nl2, or c =

11

9
nl2, or q =

11

162
l3n,

or b = 0, or b = −3l2n+ 3c, or c = −1

2

−2bl2n− 24lnq + 3b2

b
,

or b = 0, c = nl2, or b = l = 0, or b = c = l = 0,

or b 6= 0, b 6= −3l2n+ 3, c 6= −1

2

−2bl2n− 24lnq + 3b2

b
.

∂x, ∂y, x∂x − y∂y, for b = n = 0, or b = q = 0.

∂x, − (−l2nx2 + cx2)∂x + (2l2nxy − 2cxy − 18)∂y,−x∂x + y∂y,

for c = −nl2 − 3

2
b, q = 0.

∂x, − x2c∂x + (−2cxy − 18)∂y, − x∂x + y∂y, for c = −3

2
b, n = 0.

∂x, − x2q∂x + (−2qxy + l)∂y, − x∂x + y∂y,

for c = −3

2
b, q = − 1

12
lb or b = −3l2 + 3c.

∂x, ∂y, x∂x, x∂y, x
2∂y, y∂y, x

2∂x + 2xy∂y, for b = c = n = 0

or b = q = 0, c = nl2.

The individual point symmetry properties of the Chazy equations are

well-known to be the translation symmetry ∂x and the scaling symmetry

y∂y − x∂x that belongs to all equations I −XII.
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Equations I and II possess ∂y as a third symmetry, and ( 1
3xy+1)∂y−

1
6x

2∂x is the extra symmetry for III and XII. The point symmetries of

(4) are difficult to obtain for arbitrary functions b(x) and c(x), but for the

specific case of the higher-order Lane-Emden equation, we have that if n is

arbitrary, the only admitted symmetry is

Z = x∂x −
3y

n− 1
∂y.

For the value n = 1, we have the four Lie point symmetries

Z1 = y∂y,

Z2 = 0F2( ;
5

3
, 2; −x

3

27
)∂y,

Z3 =
1

x2
0F2( ;

1

3
,

4

3
; −x

3

27
)∂y,

Z4 =
1

x3
G3,0

0,3

(
x3

27

∣∣∣ 1, 13 ,0
)
∂y,

µFν andGµ,νρ,ψ is the generalized hypergeometric and Meijer G function,

respectively.

3.2. Singularity analysis

Many of the nonlinear equations which arise in boundary flow investi-

gations and related areas are subjected to numerical investigations, simply

because integrability testing is laborious. We tackle this problem with

specific reference to the above types of fluid models and explore how free

parameters affect integrability.

Since we are dealing with third-order equations, the second and third con-

stants of integration have to be determined from a series developed about

the singularity.

A singularity analysis of (1), reveals that p = −1 where all terms are

dominant excluding the last term in the equation. This p value yields the
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leading-order behaviour

a0 = 6
h

2 b+ c
.

Substitution of the expression

y (x) = 6
h

(2 b+ c) (x− x0)
+m (x− x0)

−1+s
,

into the dominant terms of (1), gives a polynomial in m.

Taking the terms linear in m as equal to zero, we find the equation

2 (s+ 1)
(
(b+ c/2) s2 + (−4 b− 7/2 c) s+ 6 b+ 3 c

)
h = 0,

which one solves to find the three resonances

s = −1, s =
1

4 b+ 2 c

(
8 b+ 7 c+±

√
−32 b2 + 16 bc+ 25 c2

)
.

The acceptable values for the resonance s, must be real and rational.

Note that there are many possibilities for the second and third reso-

nance to be positive, negative or complex.

To establish the particular values of the resonance and further progress

in the method, we may consider particular values of the free parameters,

which also facilitates the consistency test for the constants of integration.

Testing equation (14) - (16) leads to complex conjugate resonances, so

we conclude that the Painlevé test is unreliable in these cases. For equation

(17), we find that the second and third resonances are

s =
1

4− 2β

(
8− 7β +±

√
25β2 − 16β − 32

)
.

Taking β = −1, we have that s = 2 and s = 3. Regarding the consistency

test, we substitute the truncated right Painlevé series

y (x) =
2

x− x0
+ a1 + a2(x− x0) + a3(x− x0)

2
,
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into (17), and find that a1 = 0 while a2 and a3 are arbitrary constants.

Hence, we have the correct number of constants and we conclude that

that Falkner-Skan equation passes the singularity test.

As for (2), all terms are dominant except the last term, and one finds

p = −1 with the leading-order behaviour:

na0 = 0,
1

2 d

(
2 b+ c±

√
4 b2 + 4 bc+ c2 − 24 d

)
, d 6= 0. (22)

Taking the positive square root in a0, we obtain the resonances

s = −1, s = − 1

4 d

(
b
√
z + 2 b2 + bc±

√
w − 14 d

)
,

where

w = 4
√
zb3 + 2

√
zb2c+ 8 b4 + 8 b3c+ 2 b2c2 − 12

√
zbd+ 8

√
zcd

−48 b2d+ 4 bcd+ 8 c2d+ 4 d2,

and

z = 4 b2 + 4 bc+ c2 − 24 d.

Alternatively, the negative square root in a0, provides the resonances

s = −1, s =
1

4 d

(√
zb− 2 b2 − bc+ 14 d±

√
ω
)
,

where

ω = −4
√
zb3 − 2

√
zb2c+ 8 b4 + 8 b3c+ 2 b2c2 + 12

√
zbd− 8

√
zcd

−48 b2d+ 4 bcd+ 8 c2d+ 4 d2,

Let us take V I as an example. Applying the formula (22), one finds a0 =

0, 1, 6.

Suppose we choose a0 = 1, then for the resonances we have s =

−1, 1, 5. Testing for consistency, one finds that V I passes the Painlevé test.
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For Eq. (3), all terms are dominant with p = −1, and a0 has four solutions,

namely 0 (which we ignore), a pair of complex conjugates (nq 6= 0)

a0 = − 2 l

3 q
± i

2

√
3

(
1

3nq
3
√
t− l2n+ 6 b+ 3 c

3 q

1
3
√
t

)
− 1

6nq
3
√
t− l2n+ 6 b+ 3 c

6 q

1
3
√
t
, (23)

and

a0 =
1

3nq
3
√
t+

l2n+ 6 b+ 3 c

3 q

1
3
√
t
− 2 l

3 q
, (24)

where we have defined

t =
(
l3n− 18 bl − 9 cl + 3 v − 81 q

)
n2,

and

v2 = − 3

n

(
2 bl4n2 + cl4n2 + 6 l3n2q − 8 b2l2n− 8 bcl2n− 2 c2l2n

−108 blnq − 54 clnq + 8 b3 + 12 b2c+ 6 bc2 + c3 − 243nq2

)
.

Thus the three formulae for a0 form three cases for the leading-order.

Utilizing the value of a0 in Eq. (24), we find for the resonances s0 = −1,

and the formula for s1, viz.

(
3
√
t
(
−6 l3n2q + 6 q (18 bl + 9 cl − 3 v + 81 q)n

)
) s1 =

−18 b
(
−1/18 l3n+ bl + 1/2 cl − v/6 + 9/2 q

)
t2/3 +

36
(
−1/18 l3n+ bl + 1/2 cl − v/6 + 9/2 q

)
(bl + 21/2 q)n

3
√
t− 486

(
1/6nl2 + b+ c/2

)
bnq − 108nb3l

−108
(
1/9 l3n+ cl − v/6

)
nb2

−27
(
1/3nl2 + c

) (
−1/9 l3n+ cl − v/3

)
nb

+

(
1

n

(
− 2592n

(
− l6n3

216
+

5 l3n2

12

(
(b+ c/2) l − v/15 +

18 q

5

)
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+
(
−5/2 (b+ c/2)

2
l2 + 1/2 (b+ c/2) (v − 54 q) l + 9/4 q (v − 27 q)

)
n

+ (b+ c/2)
3 )((

1/2 l2b2 − 9

(
b+

8 c

9

)
ql − 69 q2

4

)
n+ b2 (b+ c/2)

)
t2/3

−216 b2
(
− l6n3

216
+

5 l3n2

12

(
(b+ c/2) l − v/15 +

18 q

5

)
+(

− 5

2
(b+ c/2)

2
l2 + 1/2 (b+ c/2)

(v − 54 q) l + 9/4 q (v − 27 q)
)
n+ (b+ c/2)

3 )
t4/3 − 7776n2

(( l7n4
1944

(
l2b2 − 531 ql

2

(
b+

92 c

177

)
+ 6 q (v − 135 q)

)
−7 l4n3

162

(
b2 (b+ c/2) l3 +

((
−v/14− 1479 q

14

)
b2 − 459 qcb

4
− 30 c2q

)
l2+

279 ql

28

((
v − 2646 q

31

)
b+

50 c

93

(
v − 2079 q

25

))
+

243 q2 (v − 45 q)

7

)
−1/27 l

( (
(v + 534 q) b2 + 588 qcb+ 147 c2q

)
(b+ c/2) l3

−447 ql2

4

((
v − 11853 q

149

)
b2

+
165 bc

149

(
v − 378 q

5

)
+

43 c2

149

(
v − 3213 q

43

))
− 8505 q2l

8

((
v − 1377 q

35

)
b

+
8 c

15

(
v − 270 q

7

))
− 2187 q3 (v − 27 q)

)
n2 +

(14 b+ 7 c)n

9

(
b2 (b+ c/2)

2
l3 − 3/14 (b+ c/2)

(
(v − 87 q) b2

−17

2
qcb+ 4 c2q

)
l2

−15 ql

14

((
v − 81 q

2

)
b2 − 19 bc

20

(
v − 810 q

19

)
− 1/2

(
v − 243 q

5

)
c2
)

+
81 q2 (v − 27 q) (b+ 4 c)

56

)
− 2/3 (b+ c/2)

4 (
b2l − 3/2 q (b+ 4 c)

) )
3
√
t

+
l8n5

2592

(
l2b2 + 366

(
b+

88 c

183

)
ql − 8 q (v − 135 q)

)
−131 l5n4

1296

(
b2 (b+ c/2) l3
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+

((
− 5 v

131
+

6936 q

131

)
b2 +

5748 qcb

131
+

1248 c2q

131

)
l2

−591 ql

131

((
v − 16389 q

197

)
b+

88 c

197

(
v − 918 q

11

))
− 1944 q2 (v − 45 q)

131

)
+

259 l2n3

108

(
b2 (b+ c/2)

2
l4

−
(
53 b+ 53 c

2

)
l3

518

(
(v − 156 q) b2 − 1302 qcb

53
+

336 c2q

53

)
− 2307 ql2

1036((
v − 52623 q

769

)
b2

+
445 bc

769

(
v − 6345 q

89

)
+

64 c2

769

(
v − 513 q

8

))
− 4374 q2l

259

((
v − 77 q

2

)
b+

10 c

27

(
v − 189 q

5

))
−

8748 q3
(
v − 27 q

)
259

)
+

(
− 175 b2 (b+ c/2)

3
l4

18
+

71 (b+ c/2)
2
l3

36

((
v − 4920 q

71

)
b2

+
2460 qcb

71
+

1056 c2q

71

)
+

(38 b+ 19 c) ql2

3((
v − 2187 q

76

)
b2 − 377 bc

304

(
v − 27945 q

377

)
− 1/2

(
v − 1458 q

19

)
c2
)

−9/2

((
v − 108 q

)
b2 + 31

(
v − 2403 q

62

)
cb+ 13

(
v − 513 q

13

)
c2
)
q2l

−
243 q3

(
v − 27 q

)(
b+ 4 c

)
4

)
n2 +

23 (b+ c/2)
2
n

6(
b2 (b+ c/2)

2
l2 + (v − 54 q) l

+9/4 q (v − 27 q)
)
n+ (b+ c/2)

3 )
1/23

(
(v − 102 q) b2 − 291 qcb− 120 c2q

)
(b+ c/2) +

33 q

46

((
v − 405 q

11

)
b2 +

9 c (v − 81 q) b

11
+ 4/11 c2 (v − 81 q)

))

+b2 (b+ c/2)
5
)))1/2

.

The third resonance can be found from the following relation involving

s1

s2 = −2
1/6 bt2/3 + n

(
(−1/3 bl − 7/2 q) 3

√
t+ b

(
1/6nl2 + b+ c/2

))
3
√
tqn

− s1.
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It is obvious that a general formulae for the resonances of the other two

leading-order’s, Eq. (23), will also be enormous, and so we omit displaying

them here. However they can be recovered from substituting

y(x) =
a0

x− x0
+m (x− x0)

−1+s
,

where a0 is given by (23), into Eq. (3) and extracting the coefficients of m,

which must be equated to zero.

As examples, suppose we apply the above formulae to the Chazy equa-

tions. Due to the restriction nq 6= 0, the above formulae will only apply to

certain cases of the Chazy equations.

In all other cases of the Chazy equations, the singularity formulae

related to Eqs. (1) and (2) apply.

As for XI, we find the cases:

� Case i: a0 = 1, with resonances s = −1, 2, 3,

� Case ii: a0 = N
2 + 1

2 , with resonances s = −1, 6, N ,

� Case iii: a0 = −N2 + 1
2 with resonances s = −1, 6,−N .

For Case i, we find that the equation passes the singularity test (N 6=

1) with the right Painlevé series

y(x) =
1

x− x0
+ a2(x− x0) + a3(x− x0)2 + . . . .

N must be an integer for us to have integer resonances in Cases ii

and iii, which is a strong indication that the equation does not possess the

Painlevé property otherwise. If N = 0, the equation fails the consistency

test.

Hence we conclude, that the equation passes the Painlevé test, for

1 < N ∈ N , provided that N 6= 1.
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In the case of XII, we recover the results of [9], whereby the equation

passes the Painlevé test.

Finally, we get to equations of the form (4). In this case, only the first

and last term are dominant, so that p = −3 (n− 1)
−1

for n > 1 and the

leading-order is

a0 =

(
3

(n+ 2) (2n+ 1)

k (n− 1)
3

)(n−1)−1

. (25)

As before, in solving for the resonances s, one must extract the coef-

ficients of m in and set them to zero, This separation of m may only be

possible if one knows the value of n, so this is as far as we may go with the

calculation.

To proceed with the analysis, we may consider specific examples.

Suppose we take the higher-order Lane-Emden equation (20). Solving, will

give the following resonances

s =
3

n− 1
, s =

n+ 2

n− 1
, s =

2n+ 1

n− 1
.

Since we know that one of the s variables should be equal to -1, then we

can find all the possible values of n.

Hence, we get n = 0, − 1/2, − 2. Clearly all these values of n give p

as a positive integer, where we would prefer that the value of p should be

negative.

Suppose we ensure that p is a negative integer, then we may select n = 2,

and we will have p = −3. For this case, with formula (25) we find a0 = 60,

and we must solve

s2 − 13s+ 60 = 0, (26)

which unfortunately gives complex conjugate resonances. Another possible

choice is the value n = 4, which yields p = −1. Here, using formula (25),
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we have that a0 = 6
1
3 and we find the equation

s2 − 7s+ 18 = 0, (27)

yielding complex conjugate resonances. In such situations the reliability of

the Painlevé test is uncertain and the analysis is inconclusive.

4. Conclusion

In this paper we have sought to simplify the integrability testing of

several classes of fluid equations, using the notion that there is strong ev-

idence that integrable equations possess the Painlevé property. In essence

of the method, one looks at the existence of a Laurent series for each de-

pendent variable of the equation.

We reviewed three general classes of third-order equations with con-

stant coefficients, and extended the study to a nonconstant coefficient class.

In particular, we prescribed an outline for the singularity testing of these

classes of equations.

Integrable equations and systems are a rarity in practice. Many sci-

entists are dissuaded from testing for integrablility, in favour of resorting

to numerical methods. This need not be the case, especially in situations

where a given equation fits into our analysis, owing to the formulae de-

scribed above.

Moreover, we aimed to promote the use of Lie and Painlevé analyses

as a basis for selecting equation parameters. This was observed from the

effects of the parameters on the symmetry properties of the equations and

particularly in the structure of the singularity analysis. That is, the results

obtained above illustrate the constraint effects of the parameters of the

equation, on integrability requirements as per Painlevé tests.

Another direct consequence of this idea, is that even in the case of
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equations that fail the singularity test, singularity testing can yield a great

deal of information regarding the equation’s free parameters. Consequently,

the dual analyses of Lie and Painlevé offers the prospect of providing better

insight about the equation under consideration.
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al Nuovo Cimento, 23 (1978), 333-337.

[3] M.J. Ablowitz, A. Ramani and H. Segur, A connection between non-

linear evolution equations and ordinary differential equations of P

Type I, Journal of Mathematical Physics, 21 (1980), 715-721.

[4] M.J. Ablowitz, A. Ramani and H. Segur, A connection between non-

linear evolution equations and ordinary differential equations of P type

II, Journal of Mathematical Physics, 21 (1980), 1006-1015.

[5] K. Andriopoulos and P.G.L. Leach, Singularity analysis for autonomous

and nonautonomous differential equations, Applicable Analysis and

Discrete Mathematics, 5 (2011), 230-239.

[6] J.P. Boyd, The Blasius Function: Computations before Computers,

the Value of Tricks, Undergraduate Projects, and Open Research Prob-

lems, SIAM Review, 50 (2008), 791-804.



42 S. Jamal and J.T. Kubayi

[7] M.S. Bruzón, G. Gambino and M.L. Gandarias, Generalized Camassa-

Holm Equations: Symmetry, Conservation Laws and Regular Pulse

and Front Solutions, Mathematics, 9 (2021), 1009.
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